藉由領域適應技術於高光譜影像達成小番茄青枯病之早期檢測

小番茄因其高營養價值而受到高度重視。台灣中南部的氣候非常適合種植小番茄,近年來產量提高且栽培面積不斷擴大,小番茄產業每年為台灣創造數十億新台幣的產值。然而,小番茄常常面臨病害問題,其中青枯病是最常見且極具傳染性的病害之一,可能導致區域性的放棄種植,因此早期檢測至關重要。
近年來,高光譜成像技術在遙測、醫學、農業和食品等領域得到廣泛應用。高光譜儀器能夠檢測人眼無法察覺的光譜波段,因此能在可見病徵出現之前,識別出潛在的風險特徵。然而,獲取有標籤的高光譜資料具有一定挑戰性,往往需要專業人士進行準確的標註。此外,不同的高光譜資料集可能在波段數量和波長方面存在差異。
本論文旨在通過領域適應(Domain Adaptation)將實驗室環境中有標籤之高光譜資料,轉移到田間未標記的高光譜資料上。研究概分為以下兩部分:第一部分在相同的實驗室環境中,針對不同的高光譜儀器進行領域適應。論文中使用IMEC高光譜儀收集具有標籤的來源資料集,另一方面則使用手持式高光譜儀器(HP280)作為無標籤的目標資料集,藉由領域適應將來源資料集的標籤用於訓練分類目標資料集。第二部分則將在實驗室收集的數據作為來源資料集,而在田間收集的數據則作為目標資料,使得實驗室蒐集的資料可以直接應用於實際的田間場域。
本論文使用聯合最大均值差異(Joint Maximum Mean Discrepancy)方法進行領域適應。在模型方面提出兩種不同的架構:第一種結合1D-CNN和全連接層,藉以驗證JMMD的有效性;第二種則是利用自注意力機制(self-attention)的設計以提高成效。透過縮小來源域與目標域資料分布差距的領域適應技術,本論文所提出的方法將有助於針對未標記的田間資料進行青枯病的早期檢測。