高光譜影像應用於番茄青枯病之早期偵測

番茄是目前消費者市場的主要蔬果之一,除了富含豐富的營養價值外,台灣年產值也高達30億元。然而,農作物的經濟價值都容易受到病害與蟲害而有所減損,番茄的青枯病所造成的傷害又屬於最為嚴重。青枯病為茄科植物的絕症,容易藉由灌溉水及土壤傳播,傳染力極強,一旦染病往往會造成整區廢耕,本論文希望藉由早期偵測的方式於疫情未擴大前,及早發現染病植株並予以移除,藉此減少青枯病所帶來的損失。
近年來隨著硬體與軟體的提升,高光譜技術應用於農業檢測逐漸受到重視,其優勢在於能夠利用光譜資訊分析肉眼無法看見的成分,透過每種物質對應的光譜反應,用以偵測作物當下的狀態。本論文透過高光譜儀採集番茄感染青枯病的番茄影像,並針對不同染病天數及不同種植環境進行比較分析,透過機器學習演算法學習與病害相關的特徵光譜進而在肉眼不可見的情況下達到早期偵測。
本論文分為兩階段,第一階段利用兩種不同光譜範圍的高光譜儀採集實驗室中栽培的染病植株葉片資料,於外在環境影響較小的情況下,藉由深度神經網路學習青枯病的光譜特徵,評估達成早期偵測的可行性。第二階段拍攝田間的植株,用以模擬實際應用的場景,此階段使用兩種方法,第一種方法採用與前階段相同的深度神經網路模型,測試其偵測青枯病的信效度;第二種方法為本論文所提出的機器學習架構,用以提取訓練樣本並搭配混合神經網路提升偵測青枯病的靈敏度。藉由本論文所設計的實驗可以得知:於外在因素較單純的實驗室環境中,簡單的深度神經網路即可達成青枯病的早期偵測;然而於外在因素較複雜的田間環境中,簡單的深度神經網路的偵測靈敏度將大幅下降,然而本論文提出的機器學習架構,透過混合神經網路學習青枯病的光譜與空間特徵,因此得以於真實的田間環境達成早期偵測的目標。

應用高光譜影像預測杏鮑菇之崩壞趨勢

近年來食品安全受到大眾的密切關注,食品檢測的技術也隨著科技的演進不斷地提升,並使得高光譜食品檢測技術受到關注。高光譜檢測技術可以對食品或農產品進行非破壞式的檢測,其原理是蒐集食品與農產品高解析度的光譜資訊,由於每種化學物質均有其對應的特定光譜反應,藉由光譜資訊可以偵測特定物質及濃度,因此得以偵測人類肉眼不可見的狀態。
本論文以杏鮑菇的新鮮度為例,杏鮑菇的新鮮度是影響其商業價值的重要關鍵。然而菇類與其他農產品最大的不同點是,菇類於採收之後的衰敗程度並非一個線性程序。這是因為菇類為真菌類,採收後不會立即死亡,依照其環境變因有可能會持續存活或成長,一直到某個臨界點才會開始崩壞,因此無法單純地透過採收日數來推估其新鮮度。
本論文藉由高光譜設備收集杏鮑菇於不同存放天數的高光譜資料,主要分三個階段,第一個階段分析杏鮑菇光譜資料,透過深度神經網路與支持向量機進行新鮮度分析之優劣。第二個階段比較三個傳統光譜相似度演算法(SAM、SID、CEM),以及深度神經網路對於杏鮑菇新鮮度的靈敏度,從實驗結果發現深度神經網路對於新鮮度檢測的準確度更高。第三個階段利用杏鮑菇採摘後幾天的光譜資訊,經過微分分析法加上深度神經網路模型得到新鮮度數值之後,再透過長短期記憶演算法預測完整的杏鮑菇崩壞趨勢,經由實驗驗證預測結果很接近真實的趨勢。

應用高光譜影像分析杏鮑菇之新鮮程度

食品安全為現行每個國家非常注重的議題,近年來由於硬體與軟體的提升,使得高光譜食品檢測技術逐漸受到重視,其優勢在於能夠利用光譜資訊分析肉眼無法看見的成分,透過每種物質特殊的光譜反應,可以對應回食物中所包含的成分或者食物當下的狀態。相關的研究領域已經應用高光譜檢測技術探討雙孢蘑菇的撞傷和褐化的偵測,然而新鮮度尚未被探討,而食品的新鮮度在食品安全領域中也是一項重要的議題。本論文透過高光譜儀採集放置不同天數不同環境下的杏鮑菇,利用機器學習的演算法分析其光譜與時間的相關性,進而找到判定杏鮑菇新鮮度的光譜特徵與波段。
本論文分為兩階段,第一階段利用近紅外光範圍(900-1700nm)的高光譜儀採集每周杏鮑菇的資料,將數據合併後分析其時間相關性。資料分析使用兩種方法,第一種方法利用機器學習的非監督式學習演算法,尋找隨著時間改變的特徵光譜,並透過波段選擇演算法決定各個關鍵波段的權重,最後應用最小化限制能量法對其權重較高的波段進行偵測;第二種方法利用機器學習的深度類神經網路將放置較久及新鮮的杏鮑菇作為訓練樣本,並利用此模型對其餘的樣本進行測試,隨後統計兩種方法的效能。實驗數據得知兩種方法的結果均隨著杏鮑菇新鮮度呈現往右移動的趨勢,以此用來界定杏鮑菇的新鮮度。第二階段進一步分析可見光範圍(400-1000 nm)與近紅外光範圍(900-1700 nm)的高光譜儀,用於比較杏鮑菇新鮮度的靈敏程度,根據實驗結果比較各時間點的統計分布後,可以發覺可見光範圍搭配深度類神經網路對於估計杏鮑菇的新鮮程度的效能最佳。